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On the Distribution of Long-Term Time Averages on
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The pressure was studied in a rather abstract theory as an important notion of
the thermodynamic formalism. The present paper gives a more concrete account
in the case of symbolic spaces, including subshifts of finite type. We relate the
pressure of an interaction function 8 to its long-term time averages through the
Hausdorff and packing dimensions of the subsets on which 8 has prescribed
long-term time-average values. Functions 8 with values in Rd are considered.
For those 8 depending only on finitely many symbols, we get complete results,
unifying and completing many partial results.
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1. INTRODUCTION

Consider the Ising model whose energy of spin system is assumed to be

EN(x)=&J :
( j, k)

xjxk&mH :
j

xj

where J is a positive constant, m the magnitude of the atomic magnetic
moments and H the external magnetic field; the first sum is over all pairs
of nearest neighbor spins. The model may be generalized by removing the
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restriction to nearest neighbor interactions to k-range interactions (k�2).
For the generalized model, the energy can be rewritten as

EN(x)= :
N&1

j=0

8(T jx)+errors

where T is the shift map on the configuration space and 8(x)=8(x1 ,..., xk)
is a function which depends only on the first k coordinates of x. The ``Ising
problem'' to calculate the free energy per spin F in the thermodynamic
limit:

F=&kT lim
N � �

1
N

log :
x1 ,..., xN

e&(1�kT ) EN (x)

and other derived quantities as the energy and the specific heat at constant
field, the magnetization and susceptibility.

It is true that, in principle, an algebraic method provides a way to
calculate F. However, it is not very effective when k is large because the
maximal eigenvalue of a big matrix must be evaluated. In this paper, we
present a way to relate F to the long-term time average of 8 defined by

_8(x)= lim
N � �

1
N

:
N&1

j=0

8(T jx)

or more exactly to the Hausdorff dimensions of the subsets [x : _8(x)=:]
of prescribed long-term time average values (see the formula at the end of
this Introduction). We prove an exact formula for the dimension in many
interesting cases (see Theorem 1 and Theorem 2).

The paper is written from a dynamical system point of view where we
use the terminology pressure instead of the free energy. Then we raise our
problem to study in the following way.

For a dynamical system T : X � X and a finite number of subsets
A1 ,..., Ad in X, how often does a point x # X go into Aj for each 1� j�d?
This is a multi recurrence problem, which was rarely treated before. We
shall tackle the problem by using a method different from the thermo-
dynamical formalism, which was usually used in the case d=1. Indeed, the
thermodynamical formalism is a good theoretical method, but is not very
practical because the pressure function is difficult to effectively calculate.
For this reason we avoid to use it. It turns out that the results obtained in
this paper will actually provide a new method to explicitly calculate the
pressure functions for many finite range interactions on a one-dimensional
system of lattice particles.
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More generally, let 8: X � Rd be a vector valued function. We would
like to know the possible values of the following limits, if exist, for different
points x

_8(x)= lim
n � �

1
n

:
n&1

j=0

8(T jx)

We call _8(x) the long-term time average or recurrence of x relative to 8.
We also would like to measure the size of the set of points x such that
_8(x) is equal to a prescribed value. To be more precise, let

L8=[: # Rd : :=_8(x) for some x # Rd ]

For : # L8 , let

E8(:)=[x # X : _8(x)=:]

What is the limit set L8? How big is the set E8(:) for each : # L8?
The answers to these questions depend upon the dynamical system

(X, T ). In the present paper we will discuss them in the special case of sym-
bolic dynamical space (7, T ) where 7=[0, 1]N, T is the shift on 7. It will
be proved that for any continuous function 8, L8 is a non-empty compact
convex set and that the Hausdorff dimension and the packing dimension of
E8(:) are equal to a certain concave function of : (Theorem 4). When 8
is locally constant, we will give a more precise description of the set L8 and
prove a formula for the dimension of E8(:) in a variational form
(Theorems 2 and 3). Closed form formulas are found in some special cases
(Theorem 1, see also the examples at the end of the paper).

There is a way to interpret (7, T ) as an interval mapping system by
taking X=[0, 1), Tx=2x (mod 1). Because every real number x # [0, 1) is
developed dyadically into x=��

n=1 xn �2n (xn=0 or 1). Without confusion,
at least for dyadic irrational numbers, we will write x=(xn). Recall that
7 can be equipped with the metric \(x, y)=2&n(x, y) where n(x, y)=
inf[n�1 : xn{ yn] and that the shift transformation T on 7 is defined by
(xn)n�1 [ (xn+1)n�1 . The space 7 being a metric space, different notions
of dimensions may be defined in the usual way (ref. 27, see also refs. 11 and
24). We shall use dimH A and dimP A to denote respectively the Hausdorff
dimension and the Packing dimension of a set A.

The first historic example would be the following. For : # [0, 1], let

E(:)={x=(xn) # [0, 1) : lim
n � �

1
n

:
n

j=1

xj=:=
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A. S. Besicovitch(1) and H. G. Eggleston(10) considered these sets E(:) and
obtained that

dimH E(:)=h(:)+h(1&:)

where h(:)=&: log2 : with log2 :=log :� log 2. It is noticed that this
example corresponds to 8(x)=1[1�2, 1) , the characteristic function of the
interval [1�2, 1).

A natural generalization of the above case will be studied and a com-
plete answer will be given, which is the first result in the paper. Let k�2
be an integer and let :1 , :2 ,..., :k be k real numbers in [0, 1] such that
:1�:2� } } } �:k . Let

E(:1 , :2 ,..., :k)

={x=(xn) # [0, 1) : lim
n � �

1
n

:
n

j=1

x j } } } x j+i&1=:i , 1�i�k=
Let us also introduce the function

4(:1 , :2 ,..., :k)=2h(:k&1&:k)+h(:k)&h(:k&1)&h(1&:1)

+ :
k&2

j=0

h(:j&2: j+1+:j+2)

(where :0=1). Let [: j ]k
j=0 be a sequence of real numbers. We say it is

convex if :i&2:i+1+:i+2�0 (\0�i�k&2),

Theorem 1. Let E(:1 , :2 ,..., :k) be defined as above, where
1=:0�:1� } } } �:k�0.

(1) If [:j ]k
j=0 is convex, then E(:1 , :2 ,..., :k){< and

dimH E(:1 , :2 ,..., :k)=dimP E(:1 , :2 ,..., :k)=4(:1 , :2 ,..., :k)

(2) If [:j ]k
j=1 is not convex, then E(:1 , :2 ,..., :k)=<.

The above situation corresponds to the function:

8(x)=(x1 , x1x2 ,..., x1x2 } } } xk), (x=(xn)n�1)

For a general function 8 which depends only on a finite number of coor-
dinates, we are also able to provide a satisfactory answer. Let 2k be the
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compact convex set of all probability vectors p= p( } ) defined on 7k=
[0, 1]k satisfying the restriction

p(x1 ,..., xk&1 , 0)+ p(x1 ,..., xk&1 , 1)

= p(0, x1 ,..., xk&1)+ p(1, x1 ,..., xk&1)

(If k=1, there is no restriction). Define a map .: 2k � Rd by

.( p)= :
x # 7k

p(x) 8(x)

Theorem 2. Suppose that 8: 7 � Rd is a function which depends
only upon the first k coordinates (k�1). Then

(1) L8=.(2k).

(2) For : # L8 , we have

dimH E8(:)=dimP E8(:)= max
p : p # 2k , .( p)=:

H( p)

where

H( p)= :
x1 ,..., xk

p(x1 ,..., xk) log2

p(x1 ,..., xk&1 , 0)+ p(x1 ,..., xk&1 , 1)
p(x1 ,..., xk)

A. Bisbas et al. have studied the special case 8(x)=x1x2 } } } xk in a
different way.(3, 4) We shall see that the result for this special case may be
deduced from either Theorem 1 or Theorem 2. The case 8(x)=((1&x1)
(1&x2), (1&x1) x2 , x1(1&x2), x1 x2) studied by P. Billingsley in ref. 2 is a
direct consequence of Theorem 2. We shall see these in Section 8.

The formula in Theorem 2 is not explicit as that in Theorem 1. But
for concrete cases, the maximum in the theorem can be computed as an
explicit function of : and the domain L8 may also be explicitly described
(see Section 8).

Our third result is a formal solution to the problem for those 8 which
are Ho� lder continuous in the sense that |8(x)&8( y)|�c$n(x, y) for some
constants c>0, 0<$<1. For ; # Rd, let

P8(;)= lim
n � �

1
n

log _2n |
7

exp �;, :
n&1

j=0

8(T jx)� dx&
It is known that the above limit exists and the function P8( } ) is analytic
and convex (see [32]). We call P8(;) the pressure function of 8.
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Theorem 3. Suppose that 8: 7 � Rd is a Ho� lder function. If
:={P8(;) for some ; # Rd, then : # L8 and

dimH E8(:)=dimP E8(:)=&
1

log 2
((;, :) &P8(;))

The theorem says that the image of Rd under the gradient {P8 is a
subset of L8 . It is usually a proper subset because boundary points of L8

may not be images of the gradient. The following result describes the situa-
tion for a continuous function 8 (without further regularity like Ho� lder
continuity).

Theorem 4. Suppose that 8: 7 � Rd is a continuous function.

(1) L8 is a non-empty compact convex set.

(2) For any : # L8 , we have

dimH E8(:)=dimP E8(:)=48(:)

where 48(:) is a concave function.

Let us give immediately a definition of the function 48(:). For n�1
and =>0, let f (:, n, =) be the number of n-cylinders (see its definition in the
next section) which contain a point x such that

}1n :
n&1

j=0

8(T jx)&: }<=

We define

48(:)= lim
= � 0

lim inf
n � �

log f (:, n, =)
log 2n

The proof of Theorem 3 uses Gibbs measures. It is classical but our
consideration of vector valued function 8 is new. Gibbs measures are also
used in the proof of Theorem 2 but in a unusual and indirect way. One
of the basic ideas in proving Theorems 1, 2, and 4 is to approximate
E(:1 , :2 ,..., :k) or E8(:) by a sequence of homogeneous Moran sets.

What we state above is a kind of multifractal analysis. But it is a little
different from the multifractal analysis of measures to which the term ``mul-
tifractal'' is often attached. Let us mention(7�9, 12, 13, 15�17, 20, 21, 25, 26, 28�31, 33)

(it is far from exhaustive). Another kind of multifractal analysis was
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engaged in ref. 22 (see more references herein) where functions rather than
measures are studied.

The main feature of the present study consists in the following aspects.
The function 8 (Theorem 4) is only continuous and the classical ther-
modynamical formalism doesn't work no longer. Indeed, if 8 is Ho� lder
continuous, the thermodynamical formalism provides a formula involving
the pressure function (Theorem 3). But there is no effective way to compute
the gradient of the pressure and the formula is not practical. However, our
formula in Theorem 2 reduces the difficulty of calculation of pressure to a
concave programming problem on a convex set of finite dimension and this
programming problem is resolvable in many interesting cases. It should be
pointed out that even in the one dimensional case where 8 is real valued,
there were few discussions on the boundary of L8 and it is actually a subtle
question. Fortunately, formulas in Theorems 1, 2 and 4 are valid either for
interior points or boundary points. When 8 is vector valued, it is worthy
to study the shape of L8 which is not always as one imagines (Theorem 1,
see also ref. 23). Both results in Theorem 3 and Theorem 4 provide us the
following formula for pressure functions

P8(;)=inf
:

((:, ;)+log 2 } 4(:))

In the case where 8 depends only upon the first k coordinates (8 is a finite
range interaction), 4(:) can be calculated by the formula in Theorem 2.
Therefore, when the sets [ p : .( p)=:] is well understood, we may find
an explicit formula for 4(:) and then an explicit formula for the pressure
function P8(;).

The materials are organized as follows. In Section 2, we introduce
some notation and present necessary known results which will be useful in
the sequel and to which the reader is asked to refer to when necessary. In
this introduction, the results are presented in an increasing order of
generality. But their proofs will be presented in an inverse order. So,
Theorems 4, 3, 2 and 1 will be respectively proved in Sections 3, 4, 5
and 6. The Section 7 is devoted to applications of Theorem 3 and the
Section 8 to applications of Theorems 1 and 2. In the last Section 9, we
point out how to generalize Theorems 2, 3 and 4 to subshifts of finite type.

2. NOTATION AND PRELIMINARY

We first give a list of notation which may be referred as to when it is
necessary. Then, for the convenience of the reader, we mention three
known results which will be useful.
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The following notation will be used.

7k [0, 1]k. Sequences in 7k are called words of length k

x |n (xj )
n
j=1 if x=(xj ) # 7. We sometimes write x |n=x1 } } } xn

uv u1 } } } unv1 } } } vm if u=u1 } } } un # 7n and v=v1 } } } vm # 7m

In(x) n-cylinder consisting of y such that y |n=x |n .

We also write I(x |n)

varn(8) supx |n= y |n
|8(x)&8( y)|, | } | denoting the Euclidean norm

Vn(8) :
n

j=1

varn(8)

Sn(8, x) :
n&1

j=0

8(T jx)

An(8, x)
1
n

Sn(8, x)

_8(x) lim
n � �

An(8, x)

P(:, n, =) [x # 7 : |An(8, x)&:|<=]

F(:, n, =) [| # 7n : I(|) & P(:, n, =){<]

f (:, n, =) Card F(:, n, =)

The following result concerns the existence of Gibbs measure.

Proposition 1. (6, 14, 32) Suppose that ,: 7 � R is a function of sum-
mable variation, i.e., ��

n=1 varn(,)<�. There exists a unique probability
T-invariant measure +=+, such that

c�
+(In(x)

exp[&nP+�n&1
j=0 ,(T jx)]

<c&1 (\x # 7, \n�1)

where c>0 and P are two constants.

The measure + is called the Gibbs measure of ,. The constant P is also
uniquely determined by , and is called the pressure of ,.

For a general account of the different notions of dimensions, we can
refer as to refs. 11, 24, 27 and 34. Recall that the Hausdorff dimension and
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packing dimension are _-stable and that if dim B and dimB denote respec-
tively the lower and upper box dimension we have

dimH A�dim BA, dimP A�dimB A (\A)

Here is a very useful result for computation of dimensions, called Billingsley
theorem.

Proposition 2 (ref. 27, p. 99, see also refs. 2 and 35). Let (X, d ) be
a (compact) metric space. Let + be a Borel probability measure on X. For
a Borel set E/X, we have a�dimH E�b if

+(E )>0, E/{x # X : a�lim inf
r � 0

log +(Br(x))
log r

�b=
For a Borel set F, we have c�dimP F�d if

+(F )>0, F/{x # X : c�lim sup
r � 0

log +(Br(x))
log r

�d=
(Br(x) being the ball centered at x with radius r).

Now we discuss a class of Moran sets. Let [nk]k�1 be a sequence of
positive integers and [ck]k�1 be a sequence of positive numbers satisfying
nk�2, 0<ck<1, n1c1�$ and nkck�1 (k�2), where $ is some positive
number. Let

D= .
k�0

Dk with D0=[<], Dk=[(i1 ,..., ik); 1�i j�nj , 1� j�k]

If _=(_1 ,..., _k) # Dk , {=({1 ,..., {m) # Dm , we define _ V {=(_1 ,..., _k ,
{1 ,..., {m).

Suppose J be a closed interval of length $. A collection F=
[J_ : _ # D] of closed subintervals of J is said to have a homogeneous
Moran structure if it satisfies

(1) J<=J;

(2) For any k�0 and _ # Dk , J_ V 1 , J_ V 2 ,..., J_ V nk+1
are subintervals

of J_ and J1 _ V i & J1 _ V j=< (i{ j) where A1 denotes the interior of A;

(3) For any k�1 and any _ # Dk&1 , 1� j�nk , we have

|J_ V j |
|J_ |

=ck

where |A| denotes the diameter of A.
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Suppose that F is a collection of closed subintervals of J having
homogeneous Moran structure, E(F) :=�k�1 �_ # Dk

J_ is called a homo-
geneous Moran set determined by F and the intervals in Fk=[J_ ; _ # Dk]
are called the k-order fundamental intervals of E(F) and J is called the
original interval of E(F). It can be seen from above definition that for any
fixed J, [nk]k�1 , [ck]k�1 , if the positions of k-order fundamental intervals
are changed, we get different homogeneous Moran sets. We use M(J, [nk],
[ck]) to denote the collection of all such homogeneous Moran sets deter-
mined by J, [nk]k�1 , [ck]k�1 . One may refer to ref. 18 and 19 for more
informations about homogeneous Moran sets. For the purpose of the present
paper, we only need a simplified version of a result contained in ref. 18,
whose simpler proof will be given here for the convenience of the reader.

Proposition 3. For any E # M(J, [nk], [ck]), we have

dimH E�lim inf
n � �

log n1n2 } } } nk

&log c1c2 } } } ck+1nk+1

Proof. Denote by t the right hand side of the above inequality.
Suppose t>0. Let + be the probability measure concentrated on E such
that +(A)=(n1n2 } } } nk)&1 for any A # Fk . Let 0<s<t. By the definition
of t, there exists c>0 such that

n1 n2 } } } nk(c1 c2 } } } ck+1nk+1)s�c (\k�1)

Let U/[0, 1] be an arbitrary closed interval with |U |�c1 . There exists a
positive integer k such that c1c2 } } } ck+1�|U |<c1c2 } } } ck . It follows that

(i) U intersects at most 3 |U |�c1c2 } } } ck+1 (k+1)-order fundamen-
tal intervals;

(ii) U intersects at most 2 k-order fundamental intervals.

By using the inequality min(a, b)�a1&sbs (0�s�1), we have

+(U )�min \ 2
n1n2 } } } nk

,
3 |U |

c1c2 } } } ck+1nk+1

_
1

n1n2 } } } nk+
�

1
n1n2 } } } nk \

3 |U |
c1c2 } } } ck+1nk+1+

s

21&s

�
1
c

3s21&s |U | s�
6
c

|U | s

This implies dimH E�s then dimH E�t. K

822 Fan and Feng



We can define homogenous Moran set in 7 by identifying cylinders
with intervals. The same result holds. It is actually this result that we shall
use.

3. PROOF OF THEOREM 4

We divide the proof into small steps. There is a simpler argument for
proving that L8 is a non-empty convex set. But we are content with an
elementary and direct proof.

Step 1. L8 is non-empty and bounded. For any p-periodic point x,
i.e., T px=x, we have _8(x)=Ap(8, x). So, L8 contains Ap(8, x). The
boundedness of L8 is implied by the boundedness of 8.

Step 2. Closedness of L8 . Suppose :i # L8 such that limi � � :i=:.
We want to prove : # L8 . We can find a sequence of points x(i) # 7 and a
sequence of integers ni A � such that x(i) # P(:i , ni , 2&i ). Let |i=x(i) |ni

.
Choose mi=2ni+1. Then define a sequence in 7 as follows

|=|1|1 } } } |1

m1

|2|2 } } } |2

m2

|3|3 } } } |3

m3

} } }

We are going to show that _8(|)=:. Following the construction of |, we
cut the set of non-negative integers into disjoint groups such that each of
the first m1 groups, noted N1, 1 ,..., N1, m1

, has cardinal n1 and each of the
next m2 groups, noted N2, 1 ,..., N2, m2

, has cardinal n2 and so on. For any
i�1 and any 1�l�mi , we have

} :
j # Ni, l

8(T j|)&Sni
(8, x (i)) }�Vni

(8)

For any n sufficiently large (n>m1n1), there are unique integers k and
0�q<mk+1 such that

m1 n1+ } } } mknk+qnk+1�n<m1n1+ } } } mknk+(q+1) nk+1

From the above obtained inequality, it follows that

} :
m1n1+ } } } mk nk+qnk+1&1

j=0

8(T j|)& :
k

i=1

miSni
(8, x(i))&qSnk+1

(8, x(k+1)) }
� :

k

i=1

miVni
(8)+qVnk+1

(8)
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Recall the following elementary result, called Stokes theorem. Let [ai ] be
a sequence of real numbers and [bi ] be a sequence of positive numbers
such that �n

i=1 bi � �. Suppose limi (ai �bi)=:. Then limn(�n
i=1 a i�

�n
i=1 bi)=:. From the last inequality, the fact n&1Vn(8) � 0 and the

Stokes theorem, it follows that the subsequence An(8, |) (n=m1 n1+ } } }
+mknk+qnk+1) tends to :. In order to pass the subsequence through to
the whole sequence, it suffices to notice that

:
n&1

j=m1n1+ } } } mk nk+qnk+1

8(T j|)=O(nk+1)=O(log mk)=o(n)

and that

lim
n � �

n
m1n1+ } } } mk nk+qnk+1

=1 K

Step 3. Convexity of L8 . It suffices to show the rational convexity
in the sense that if :, ; # L8 and p, q are positive integers, then ( p:+q;)�
( p+q) # L8 . Take x # E8(:) and y # E8(;). For n�1, construct a finite
sequence

|n=x | n } } } x |n

p

y |n } } } y | n

q

Then construct an infinite sequence |=|1 |2 } } } . As in Step 2, we can see
that for any n�1,

|S( p+q) n(8, |)& pSn(8, x)&qSn(8, y)|�( p+q) Vn(8)

This, together with a similar but simpler argument as in Step 2, allows us
to get _8(|)=( p:+q;)�( p+q). K

Step 4. For : # L8 , we have

lim
= � 0

lim inf
n � �

log f (:, n, =)
log 2n = lim

= � 0

lim sup
n � �

log f (:, n, =)
log 2n (=: 48(:))

We want to show that as a sequence of n, log f (:, n, =) shares a kind
of subadditivity. That means, for any =>0, there is a N such that

[ f (:, n, =)]m� f (:, nm, 2=) (\n�N, \m�1)
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In fact, suppose |1 ,..., |m # F(:, n, =). Let |=|1 } } } |m . If x # I(|), again
by the argument in Step 2 we get

|Snm(8, x)&nm:|�nm=+mVn(8)

It follows that | # F(:, nm, =+n&1Vn). Consequently, since different
choices (|1 ,..., |m) produce different |,

[ f (:, n, =)]m� f (:, nm, =+n&1Vn(8))

Take a sufficiently large N so that n&1Vn(8)�= (n�N ). Thus the claimed
subadditivity is proved. By using the subadditivity, it is easy to see that

lim sup
n � �

log f (:, n, =)
log 2n �lim inf

n � �

log f (:, n, 2=)
log 2n

which finishes Step 4. K

Step 5. For : # L8 , we have dimP E8(:)�48(:). Let

G(:, m, =)= ,
�

n=m

[x # 7 : |An(8, x)&:|<=]

It is clear that for any =>0,

E8(:)/ .
�

m=1

G(:, m, =)

Note that if n�m, G(:, m, =) is covered by the union of all cylinders I(|)
with | # F(:, n, =) whose total number is f (:, n, =). Therefore we have the
following estimate

dimB G(:, m, =)�lim sup
n � �

log f (:, n, =)
log 2n (\=>0, \m�1)

On the other hand, by using the _-stability of the packing dimension, we
have

dimP E8(:)�dimP \ .
�

m=1

G(:, m, =)+�sup
m

dimP G(:, m, =)

�sup
m

dimB G(:, m, =)
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This, together with the above estimate and Step 4, leads to the desired
result. K

Step 6. For : # L8 , we have dimH E8(:)�48(:). Given $>0. By
Step 4, there are lj A � and =j a 0 such that

f (:, lj , =j )>2lj (48(:)&$�2)

Write simply Flj
=F(:, lj , =j ) and flj

= f ( :, lj , =j ). Define a new sequence
[l j*] in the following manner

l1 ,..., l1

N1

; l2 ,..., l2

N2

;...; lj ,..., lj

Nj

;...

where Nj is defined recursively by

Nj=2lj+1+Nj&1 ( j�2); N1=1

Let nj= fl*j
and cj=2&lj*. Define

3= `
�

j=1

Fl*j

We are going to show that 3/E8(:). In fact, for any n(>l1), there is a
unique integer J(n) such that

:
J(n)

i=1

l i*�n< :
J(n)+1

i=1

l i*

The choice of Nj implies that lk+1=o(Nk). It follows that

lim
n � �

�J(n)
i=1 l i*

�J(n)+1
i=1 l i*

=1

Let x=(xn) # 3. Let 4j be the set of integers between l1*+ } } } +l*j&1+1
and l1*+ } } } +l j*. We have

Sn(8, x)= :
J(n)

j=1

:
k # 4j

8(T kx)+O(l*J(n)+1)

= :
J(n)

j=1

l j*(:+o(1))+o(n)

=:n+o(n)
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It follows that x # E: . Observe that 3 is a homogeneous Moran set in 7.
More precisely 3 # M(7, [nj ], [cj ]). By Proposition 3, we have

dimH 3�lim inf
k � �

log(n1 } } } nk)
&log(c1 } } } ckck+1nk+1)

�lim inf
k � �

log( fl*1
} } } fl*k

)

log(2l*1 } } } +l*k +l*k+1)

=lim inf
k � �

log( fl*1
} } } fl*k

)

log(2l*1 } } } +l*k )

�48(:)&$ K

Step 7. 48 : L8 � [0, 1] is concave. For : # L8 , it is evident that
48(:)�0. Since f (:, n, =)�2n, 48(:)�1. Now let :, ; # L8 . Let p, q be
two positive integers. By the subadditivity proved in Step 4, for large n we
have

[ f (:, n, =)] p [ f (;, n, =)]q� f (:, np, 2=) f (;, nq, 2=)

Let u # F(:, np, 2=) and v # F(;, nq, 2=). Take a point x # I(uv). We have

|S( p+q) n(8, x)&np:&nq;|�2=n( p+q)+Vnp(8)+Vnq(8)

It follows that if n is sufficient large, uv # F(( p:+q;)�( p+q), n( p+q), 3=).
Consequently, for large n we have

f (:, np, 2=) f (;, nq, 2=)� f \p:+q;
p+q

, n( p+q), 3=+
By the result in Step 4, we can get

p
p+q

48(:)+
q

p+q
48(;)�48 \ p

p+q
:+

q
p+q

;+
We could say that we have proved the rational concavity of the (bounded)
function 48 . However, the concavity of 48 is a consequence of its rational
concavity. To see this, it suffices to consider the one-dimensional case. K

Let us make some remarks on Theorem 4.

Remark 1. L8 is the closure of the set of all averages Ap(8, x) for
different p-periodic points x ( p�1).
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We have seen in Step 2 that all such averages are in L8 . So, we have
to check that any point : # L8 may be approximated by such averages.
Suppose :=_8(x) for some x. For m�1, let x (m) be the m-periodic point
such that x(m) | m=x |m . Then :=limm � � Am(8, x (m)).

Remark 2. For : # L8 , we have

dimH E8(:)=dimH E� 8(:)=dimH E
�

8(:)

where

E� 8(:)=[x # 7 : lim sup
n

An(8, x)=:]

E
�

8(:)=[x # 7 : lim inf
n

An(8, x)=:]

Let E� (:) be the set of all x such that : is a cluster point of An(8, x).
Since Theorem 4 is now available, we have only to show that
dimH E� (:)�48(:)+$ for any $>0. By the result in Step 4, for some =>0
we have

lim sup
n � �

log f (:, n, =)
log 2n �48(:)+

$
2

Note that, E� (:)/��
m=1 �n�m Gn where Gn is the union of all I(|) with

| # F(:, n, =). Thus letting s=48(:)+$, for any m�1 we have

Hs
2&m(E� (:))� :

�

n=m

f (:, n, =) 2&ns� :
�

n=1

f (:, n, =) 2&ns�C :
�

n=1

2&($�2) n<�

4. PROOF OF THEOREM 3

The result of Theorem 3 was well-known for the one-dimensional case,
i.e., d=1 (see ref. 13). The following proof for the high-dimensional case
consists in introducing the family of energy functions ,;=(;, 8) (; # Rd )
and considering the corresponding family of Gibbs measures +; :=+,;

.
Denote

D(+; , x)= lim
n � �

log +;(In(x))
log |In(x))|
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when the limit exists. By the Gibbs property of +; (Proposition 1), we get
the following relation

D(+; , x)=&
1

log 2 \ lim
n � �

1
n �;, :

n&1

j=0

8(T jx)�&P8(;)+
Since the measure +; is ergodic, by Birkhoff ergodic theorem, +; -almost
everywhere we have

lim
n � �

1
n

:
n&1

j=0

8(T jx)=|
7

8 d+;={P8(;)

(see refs. 5 and 32 for the second equality). Since :={P8(;), it follows
that +;(E8(:))=1 and for any x # E8(:),

D(+; , x)=&
1

log 2
((;, {P8(;)) &P8(;))

Thus Theorem 3 follows from the Billingsley theorem (Proposition 2). K

5. PROOF OF THEOREM 2

5.1. Lemmas

Let 2+
k be the set of strictly positive probability vectors in 2k , i.e.,

p # 2k such that p(x)>0 (\x # 7k).

Lemma 1. 2+
k is a dense subset of 2k .

Proof. Since 2k is convex and p0=(1�2k,..., 1�2k) # 2, for any
0<=<1 we have

(1&=) 2k+=p0/2+
k

We get the desired result by letting = � 0. K

For any |=(xj )1� j�n+k&1 , we define

N|(=1 ,..., =k)=Card[1� j�n : xj+l&1==l , 1�l�k]

Note that N|(=1 ,..., =k) is just the number of repetitions of the word =1 } } } =k

in the word |. The following observation is immediate but fundamental
and is our starting point.
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Lemma 2. For x # 7 and n�1, we have

:
n&1

j=0

8(T jx)= :
=1 ,..., =k

N|n
(=1 ,..., =k) 8(=1 ,..., =k)

where |n=(xj )1� j�n+k&1 .

It follows that our problem is reduced to the study of the limits of
n&1N|n

(=1 ,..., =k) as n � �. The possible limits will be described through
the following lemma.

Lemma 3. For any $>0, there is a constant N>0 such that for
every |=(xj )

n+k&1
j=1 # 7n+k&1 with n�N, there exists a probability vector

p # 2k having the property that for all (=1 ,..., =k) # 7k ,

}N|(=1 ,..., =k)
n

& p(=1 ,..., =k) }<$, p(=1 ,..., =k)�
$

2k+1

Proof. Denote |$=(xj )1� j�(n&1)+k&1 and |"=(xj+1)1� j�(n&1)+k&1 .
Observe the following relations

:
=1 ,..., =k

N|(=1 ,..., =k)=n

N|(=1 ,..., =k&1 , 0)+N|(=1 ,..., =k&1 , 1)=N|$(=1 ,..., =k&1)

N|(0, =1 ,..., =k&1)+N|(1, =1 ,..., =k&1)=N|"(=1 ,..., =k&1)

The first relation implies that n&1N|( } ) is a probability vector and the last
two relations imply

|N|(=1 ,..., =k&1 , 0)+N|(=1 ,..., =k&1 , 1)

&N|(0, =1 ,..., =k&1)&N|(1, =1 ,..., =k&1)|�1

Now we deduce by contradiction that the first claimed inequality in the
lemma holds. If the inequality didn't hold, there would be a positive
number $0 , a sequence of integers nj A � and a sequence of words
|nj

# 7nj+k&1 such that for any p # 2k we have

}
N|nj

(=1 ,..., =k)

nj
& p(=1 ,..., =k) }�$0 (some (=1 ,..., =k))
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Since the set of probability vectors is compact, we can suppose that
n&1

j N|nj
( } ) converges. Denote its limit by p~ , which is in 2k by the above

observation. Now note that the last inequality is violated by p~ , which is a
contradiction. Thus we have proved that there exists p # 2k such that

}
N|nj

(=1 ,..., =k)

nj
& p(=1 ,..., =k) }<$

2

(For convenience, we take $�2 in place of $). Let p0=(1�2k,..., 1�2k) and
p$=(1&$�2) p+($�2) p0 . It is easy to check that this p$ is what we
want. K

The following lemma is actually already obtained in the proof of the
preceding lemma.

Lemma 4. If n&1
j N|nj

( } ) � p( } ), then p # 2k .

5.2. Proof of Theorem 2

Now we prove Theorem 2 by four steps.

Step 1. L8/.(2k). Suppose : # L8 . Then there is a x=(xi ) # 7
such that _8(x)=:. We want to show : # .(2k). By Lemma 2, we have

1
n

:
n&1

j=0

8(T jx)= :
=1 ,..., =k

n&1N|n
(=1 ,..., =k) 8(=1 ,..., =k)

where |n=(x j )1� j�n+k&1 . There is certainly a convergent subsequence of
n&1N|n

( } ), whose limit p is in 2k by Lemma 4. It follows that :=.( p). K

Step 2. .(2+
k )/L8 . Actually, we will prove that if :=.( p) with

p # 2+
k , then

E8(:){<, dimH E8(:)�H( p)

For =1 ,..., =k # 7k , write

t(=1 ,..., =k)=
p(=1 ,..., =k)

p(=1 ,..., =k&1 , 0)+ p(=1 ,..., =k&1 , 1)
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Since p is strictly positive, t is a well defined function on 7k . Then, for any
n�1, define a function qn on 7n as follows. If n<k, let

qn(a1 ,..., an)= :
=1 ,..., =k&n

p(a1 ,..., an , =1 ,..., =n&k)

If n�k, let

qn(a1 ,..., an)= p(a1 ,..., ak) t(a2 ,..., ak+1) } } } t(an&k+1 ,..., an)

Using the fact t(=1 ,..., =k&1 , 0)+t(=1 ,..., =k&1 , 1)=1, it is easy to check that

q1(0)+q1(1)=1

:
=n+1

qn+1(a1 ,..., an , =n+1)=qn(a1 ,..., an)

:
=1

qn+1(=1 , a1 ,..., an)=qn(a1 ,..., an)

By the first two equalities above and the Kolmogorov consistent theorem,
there exists a unique probability measure &p such that

&p(In(a1 ,..., an))=qn(a1 ,..., an)

By the third equality, &p is T-invariant. It is clear, from the definition of qn ,
that &p shares the Gibbs property relative to the energy function defined by

�(x)=log t(x1 ,..., xk), x=(xj ) # 7

The measure &p being ergodic (see ref. 6), according to the Birkhoff ergodic
theorem, for &p -almost all x # 7 we have

_8(x)=|
7

8 d&p

= :
=1 ,..., =k

8(=1 ,..., =k) qk(=1 ,..., =k)

= :
=1 ,..., =k

8(=1 ,..., =k) p(=1 ,..., =k)

=.( p)=:
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This implies &p(E8(:))=1 and then E8(:){<. The ergodic theorem also
implies that for &p -almost all x # 7 we have

lim
n � �

&p(In(x))
log |In(x)|

= lim
n � �

:
n&1

j=0

�(T jx)
&n log 2

=&
1

log 2 |
7

� d&p=H( p)

So, the estimate on the dimension follows from the Billingsley theorem
(Proposition 2). K

Step 3. .(2k)".(2+
k )/L8 . We want to prove the same results as

in the Step 2 for a non-negative vector p.
Let :=.( p). By lemma 1, there is a sequence of pm # 2+

k such that
limm pm= p. Obviously limm :m=: where :m=.( pm). By what we proved
in Step 2,

dimH E8(:m)�H( pm), (\m�1)

Using this fact, we are going to construct a homogeneous Moran set con-
tained in E8(:). We claim first that for any m�1, =>0 and $>0, there
exists an integer nm, =, $�1 such that

f (:m , n, =)�2n(H( pm)&$) (\n�nm, =, $)

In fact, we have

E8(:m)/ .
�

l=1

G(:m , l, =)

where

G(:m , l, =)= ,
n�l

P(:m , n, =)

By the _-stability of the Hausdorff dimension, there must be an l=
l(:m , =, $) such that

dimH G(:m , l, =)�dimH E8(:m)&
$
2

�H( pm)&
$
2

Since for any n�l, [I(|)] (| # F(m, n, =)) is a net cover of G(:m , l, =), we
have

lim inf
n � �

log f (m, n, =)
log 2n �dimB G(:m , l, =)�H( pm)&

$
2

from which follows the claim.
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Take now an increasing sequence lm�l(:m , 1�m, $) such that

f (:m , lm , 1�m)�2n(H( pm)&$)

Write simply Fm=F(:m , lm , 1�m) and fm= f (:m , lm , 1�m). As in Step 6 of
the proof of Theorem 4, define

3= `
�

j=1

Fl*j

We are going to show that 3/E8(:), which proves E8(:){<, and

dimH 3� lim
m � �

H( pm)&
$
2

�H( p)&
$
2

In fact, for any n(>l1), let J(n) be the unique integer such that

:
J(n)

i=1

l i*�n< :
J(n)+1

i=1

l i*

The choice of Nj implies that

lim
n � �

�J(n)
i=1 l i*

�J(n)+1
i=1 l i*

=1

Let x=(xn) # 3. Let 4j be the set of integers between l1*+ } } } +l*j&1+1
and l1*+ } } } +l j*. We have

Sn(x)= :
J(n)

j=1

:
k # 4j

8(T kx)+o(n)

= :
J(n)

j=1

l j*(: j*+o(1))+o(n)

where : j* is the sequence defined by :j as l j* is defined by lj . It follows that
x # E: . Observe that 3 is a homogeneous Moran set, i.e., 3 # M([0, 1],
[nj ], [cj ]). The estimate dimH 3�H( p)&$ may be obtained in the same
way as in the proof of Theorem 4. K

By now, we have proved the first assertion of Theorem 2 and that for
: # L8 we have

dimH E8(:)� max
p # 2k , .(:)= p

H( p)
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Step 4. For : # L8 , we have

dimP E8(:)� max
p # 2k , .(:)= p

H( p)

Denote the right hand side by d(:). For =>0 and n�1, let

B(n, =)= ,
�

m=n

[x # 7: |m&1Sm(8, x)&:|<=]

We have obviously

E8(:)/lim sup
n � �

B(n, =) (\=>0)

By the _-stability of the packing dimension and the inequality
dimP�dimB , we have only to show that

lim inf
= � 0

lim sup
n � �

dimB B(n, =)�d(:)

We are then led to find a cover of B(n, =) and estimate the number of cylin-
ders in it. Take the cover consisting of all cylinders I(x1 ,..., xn+k&1) con-
taining some y # B(n, =). Estimate now T (n, =), the number of all these
cylinders. In order to estimate T (n, =), we are going to divide the cover into
several classes of cylinders and then to estimate the number of cylinders in
each class. Let [n(=1 ,..., =k)] be a system of 2k non-negative integers such
that

n(=1 ,..., =k)=N|(=1 ,..., =k)

}1n :
=1 ,..., =k

n(=1 ,..., =k) 8(=1 ,..., =k)&: }<=

for some | # 7n+k&1 . We denote by T([n(=1 ,..., =k)]) the collection of all
cylinders I(|) with | having the above mentioned property, and
1 ([n(=1 ,..., =k)]) its cardinal. Let Pk be the set of all possible systems
[n(=1 ,..., =k)]. It is clear that the cardinal of Pk is at most n2k

. Then

T (n, =)=: 1 ([n(=1 ,..., =k)])�n2k
max 1 ([n(=1 ,..., =k)])

where the sum and the supremum are taken over the set Pk . Thus

log T (n, =)
log 2n �max

1 ([n(=1 ,..., =k)])
log 2n +O \log n

n +
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Now let us estimate 1 ([n(=1 ,..., =k)]) through some conveniently con-
structed invariant measure. Since n(=1 ,..., =k)=N|(=1 ,..., =k), by Lemma 3,
we can find p # 2+

k such that

}n(=1 ,..., =k)
n

& p(=1 ,..., =k) }<=, p(=1 ,..., =k)>
=

2k+1

As in Step 2, we construct a measure &p by using this p. For any |=
(xi )

n&k+1
i=1 # T([n(=1 ,..., =k)]), N|(=1 ,..., =k)=n(=1 ,..., =k). So, we have

&p(I(|))=
p(x1 ,..., xk)
t(x1 ,..., xk)

`
=1 ,..., =k

t(=1 ,..., =k)n(=1 ,..., =k)

�
=

2k+1 `
=1 ,..., =k

t(=1 ,..., =k)n(=1 ,..., =k)

where (xi )
k
i=1=| | k . Let a denote the right hand side of the above

inequality. Then

a } 1 ([n(=1 ,..., =k)])�&p \.
|

In+k&1(|)+�1

Combining the last two expressions gives

1 ([n(=1 ,..., =k)])�
1
a

�
2k+1

=
`

=1 ,..., =k

t(=1 ,..., =k)&n(=1 ,..., =k)

Then

log 1 ([n(=1 ,..., =k)])
log 2n

�O \log =
n +& :

=1 ,..., =k

n(=1 ,..., =k)
n

log2 t(=1 ,..., =k)

�O \log =
n +& :

=1 ,..., =k

p(=1 ,..., =k) log2 t(=1 ,..., =k)+O(&= log =)

Note that .( p) is near : in the sense that

|.( p)&:|= } :
=1 ,..., =k

p(=1 ,..., =k) 8(=1 ,..., =k)&: }
� } :

=1 ,..., =k

n(=1 ,..., =k)
n

8(=1 ,..., =k)&: }+2k= &8&<(2k &8&+1) =
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where &8& means the maximal value of |8|. Now we can conclude that

log T (n, =)
log 2n �O \log =

n ++O(&= log =)+ sup
p # 2k , |.( p)&:|<(2k &8&+1) =

H( p)

To finish the proof, let n � � then = � 0. K

6. PROOF OF THEOREM 1

6.1. Lemmas

Let n�k�2 be two integers, let |=(xj )
n
j=1 # 7n . It is natural to

introduce the following quantities. For 1�i�k, define

Pi (|)=Card[1� j�n&i+1 : xj } } } xj+i&1=1]

It is clear that Pi (|) is the number of 1-blocks 1 } } } 1 of length i in the
sequence |. Here by 1-block (of length i) in |=(xi )

n
i=1 we mean the words

of the form (xm) j+i&1
m= j with xl=1 for all j�l� j+i&1. Such a 1-block

will be said to be maximal if xj&1=x j+i=0 (with convention x0=0 and
xn+1=0). We shall be interested in those | which are the heads of points
in E(:1 ,..., :k). Our aim is to study the limit of n&1Pi (|) as n tends to the
infinity.

In order to practically estimate Pi (|) (| # 7n), we introduce another
system of k quantities which are defined as follows:

N*(|) :=the number of 1's in |

N
*

(|) :=the number of maximal 1-blocks in |

Ni (|) :=the number of maximal 1-blocks of length i in | (1�i�k&2)

It is obvious that

:
k&2

i=1

Ni (|)�N
*

(|)�N*(|)

Suppose |{1 } } } 1, 0 } } } 0 (the two constant sequences). Observe that
| must be in one of the following four forms

1t1 0s11t2 0s2 } } } 1tr 0sr, 0s11t1 0s21t2 } } } 0sr1tr

1t1 0s11t20s2 } } } 1tr, 0s11t1 0s21t2 } } } 0sr1tr 0sr+1
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where 1t means a 1-block of length t (�1) and 0s means a 0-block of
length s (�1). When | is represented as above, we have the following
expression for the interested quantities

N*(|)=t1+ } } } +tr

N
*

(|)=r

Ni (|)=Card[1� j�r : tj=i ] (1�i�k&2)

Lemma 5. Suppose x # (xj ) # E(:1 ,..., :k). Let |=(xj )
n
j=1 # [0, 1]n.

We have

N*(|)=:1n+o(n)

N
*

(|)=(:1&:2) n+o(n)

Ni (|)=(:i&2:i+1+: i+2) n+o(n) (1�i�k&2)

Proof. Clearly N*(|)=P1(|)=:1 n+o(n). Define a mapping
S: [0, 1]n � [0, 1]n by

|=(x1 , x2 ,..., xn) [ (x1 x2 , x2 x3 ,..., xn&1 xn , xn)

Let us observe the change of 1-blocks from | to S|. A 1-block of length
r in | is reduced to a 1-blocks of length r&1 in S|, with perhaps one
exception (when xn=1). This observation implies the following four
equalities

Pi+1(|)=Pi (S|)+O(1)

N*(S|)=N*(|)&N
*

(|)+O(1)

N
*

(S|)=N
*

(|)&N1(|)+O(1)

Ni (|)=N1(S i&1|)+O(1)

By using the first equality and the fact P1(|)=N*(|), we have

Pi (|)=P1(S i&1|)+O(1)=N*(S i&1|)+O(1)

This together with the second equality yields

Pi (|)=Pi&1(|)&N
*

(S i&2|)+O(1)

Consider now

P2(|)=P1(S|)+O(1)=N*(|)&N
*

(|)+O(1)
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Since P2(|)=:2 n+o(n), we get

N
*

(|)=(:1&:2) n+o(n)

Let now 1�i�k&2. Consider

Pi+2(|)=N*(S i+1|)+O(1)

=N*(S i|)&N
*

(S i|)+O(1)

=[N*(S i&1|)&N
*

(S i&1|)]&[N
*

(S i&1|)&N1(S i&1|)]+O(1)

=Pi (|)&2N
*

(S i&1|)+Ni (|)+O(1)

=Pi (|)&2[Pi (|)&Pi+1(|)]+N i (|)+O(1)

This together with Pi (|)=:in+o(n) gives Ni (|)=(:i&2:i+1+:i+2) n+
o(n). K

Let n�k�2. For k non-negative integers n*, n
*

, ni (1�i�k&2),
define

A(n*, n
*

, n1 ,..., nk)

=[| # 7n : (N*(|), N
*

(|), N1 ,..., Nk&2(|))=(n*, n
*

, n1 ,..., nk&2)]

Lemma 6. With the above notation, we have

Card A(n*, n
*

, n1 ,..., nk)

=[2C n
*

&1
n&n*&1+C n

*n&n*&1+C n
*

&1
n&n*&1] C n1

n
*
C n2

n
*

&n1
} } } C nk&2

n
*

&n1& } } } &nk&3

} C n
*

&n1&n2& } } } &nk&2
n*&(k&2) n

*
+(k&3) n1+(k&4) n2+ } } } +nk&3

Proof. Let's first remark the following elementary fact. Let m, n be
two positive integers. Then there are exactly Cm&1

n&1 different positive integer
solutions for the equation x1+ } } } +xm=n. Consequently, there are
Cm&1

n&km&1 different integer solutions for

y1+ } } } + ym=n, y i>k for 1�i�m

We account first all | in the form 1t10s11t20s2 } } } 1tr 0sr. To get all such
|, we divide n&n* 0's into n

*
groups of respective sizes s1 , s2 ,..., sn

*
. Then

we divide n* 1's into n
*

groups of respective sizes t1 , t2 ,..., tn
*
, ni of which
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are equal to i for each 1�i�k&2. So, the number of those | is just the
number of solutions of the following system

1%. s1+s2+ } } } +sn
*
=n&n*, si�1 (1�i�n

*
);

2%. t1+t2+ } } } +tn
*
=n*

under the condition that among these n
*

integers t1 ,..., tn
*

, there are n1

integers taking value 1, n2 integers taking value 2,..., nk&2 integers taking
value k&2; the remaining n

*
&(n1+ } } } +nk&2) integers, if any, take

values greater than k&2 and their sum is n
*

&(n1+2n2+(k&2) nk&2).
According to the remark, there are C n

*
&1

n&n*&1 solutions (s1 ,..., sn
*
)

satisfying 1%. The number of the solutions (t1 ,..., tn*) of 2% is equal to

C n1
n

*
C n2

n
*

&n1
} } } C nk&2

n
*

&n1& } } } &nk&3

_C n
*

&n1& } } } &nk&2&1
n*&(n1+2n2+ } } } +(k&2) nk&2)&(k&2)(n

*
&n1& } } } &nk&2)&1

The last factor in the above expression is obtained like this: After have
arranged 1-blocks of lengths 1, 2,..., k&2 there are yet n*&(n1+2n2+ } } }
+(k&2) nk&2) 1's. They are then divided into n

*
&(n1+ } } } +nk&2)

groups each of which is of size strictly greater than k&2. By the remark,
the number of all possibilities is the number of solutions of the equation

z1+ } } } +zn
*

&(n1+ } } } +nk&2)=n*&(n1+2n2+ } } } +(k&2) nk&2)

Thus the cardinal of the subset of elements of the form 1t10s11t20s2 } } } 1tr 0sr

in A(n*, n
*

, n1 ,..., nk) is equal to

C n
*

&1
n&n*&1C n1

n
*
C n2

n
*

&n1
} } } C nk&2

n
*

&n1& } } } &nk&3

_C n
*

&n1&n2& } } } &nk&2
n*&(k&2) n

*
+(k&3) n1+(k&4) n2+ } } } +nk&3

In a similar way, we can consider the other three forms

0s11t10s21t2 } } } 0sr1tr, 1t10s11t20s2 } } } 1tr, 0s11t10s21t2 } } } 0sr1tr 0sr+1

and obtain the desired result. K

Lemma 7. Let n�m�l be three non-negative integers, then

1
n

log C l
m=L \m

n +&L \l

n+&L \m&l

n ++O \log n
n +

where L(x)=x log x.
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Proof. By the following form of Stirling formula

log p!= p log p& p+ 1
2 log p+O(1)

we have

log C l
m=log m!&log l!&log(m&l)!

=m log m&l log l&(m&l) log(m&l)

+ 1
2 [log m&log l&log(m&l)]+O(1)

Therefore

1
n

log C l
m=

1
n

[m log m&l log l&(m&l) log(m&l)]+O \log n
n +

=
m
n

log
m
n

&
l

n
log

l

n
&

m&l

n
log

m&l

n
+O \log n

n + K

For n�k�2 and =>0, let F(n, =) be the set of | # 7n such that

|N*(|)&:1n|�=n

|N
*

(|)&(:1&:2) n|�=n

|Ni (|)&(:i&2:i+1+:i+2) n|�=n (1�i�k&2)

and let

f (n, =)=Card F(n, =)

Lemma 8. If (:1 , :2 ,..., :k) satisfies the convexity condition (1) in
Theorem 1, then

lim
= a 0

lim
n � �

log f (n, =)
log 2n =lim

= a 0
�
n � �

log f (n, =)
log 2n =4(:1 , :2 ,..., :k)

Proof. Without loss of generality, we give only a proof for the case
k=3. For n�3 and 1

2�=>0, let n*, n
*

, n1 be any integers satisfying

|n*&:1n|�=n

|n
*

&(:1&:2) n|�=n

|n1&(:1&2:2+:3) n|�=n
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Let V(n*, n
*

, n1)=Card A(n*, n
*

, n1). By Lemma 6, we have

V(n*, n
*

, n1)=[2C n
*

&1
n&n*&1+C n

*n&n*&1+C n
*

&2
n&n*&1] } C n1

n
*

} C n
*

&n1
n*&n

*

It is easy to see that V(n*, n
*

, n1)>0 only when n�n*�n
*

�n1 ,
n�n*+n

*
, n*&2n

*
+n1�0 and when n is great enough, there are

always such n*, n
*

, n1 . By Lemma 7,

1
n

log V(n*, n
*

, n1)=
1
n

log(C n
*n&n* } C n1

n
*

} Cn
*

&n1
n*&n

*
)+O \log n

n +
=L \n*&n

*
n ++L \n&n*

n +&L \n1

n +&L \n&n*&n
*

n +
&2L \n

*
&n1

n +&L \n*&2n
*

+n1

n ++O \log n
n +

Since

f (n, =)= :
n*, n

*
, n1

V(n*, n
*

, n1)�n3 sup
n*, n

*
, n1

V(n*, n
*

, n1)�n3f (n, =)

it follows that

log f (n, =)
n

= sup
n*, n

*
, n1

1
n

log V(n*, n
*

, n1)+O \log n
n +

Let n A � and then = a 0, since L is continuous, it follows that

lim
= a 0

lim
n � �

log f (n, =)
log 2n =lim

= a 0
�
n � �

log f (n, =)
log 2n

=
1

log 2
[L(:2)+L(1&:1)&2L(:2&:3)&L(:3)

&L(1&2:1+:2)&L(:1&2:2+:3)]

=4(:1 , :2 , :3) K

6.2. Proof of Theorem 1

The basic idea is the same as that for proving Theorem 2. But here we
are going to estimate directly the dimension without using Gibbs measures.
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First we prove that dimP E(:1 ,..., :k)�4(:1 ,..., :k). Let =>0 be an
arbitrary positive number. If x=(xn) # E(:1 ,..., :k), then (x1 ,..., xn) # F(n, =)
when n is large enough (F(n, =) was defined before Lemma 8). That means

E(:1 ,..., :k)/ .
�

l=1

G(l, =)

where

G(l, =)=[ y=( yn) # 7 : \m�l, ( y1 ,..., ym) # F(m, =)]

Note that if m�l, G(l, =) can be covered by f (m, =) m-cylinders (see the
definition of f (m, =)). It follows that the upper box dimension of G(l, =)
does not exceed limm � � log f (m, =)� log 2m. By the _-stability of the pack-
ing dimension, we have

dimP E(:1 ,..., :k)� lim
m � �

log f (m, =)
log 2m (\=>0)

Letting = � 0, we get the desired inequality.
Now we are going to show the inverse inequality. \$>0, by Lemma 8,

there are a sequence of integers lj A � and a sequence of real numbers =j a 0
such that

f (lj , =j )>2(4&$�2) lj

As in the proof of Theorem 4, define new sequences [l j*] and [= j*]. Then
let

nj= f (l j* , =j*), cj=2&l*j ( j�1)

3= `
�

j=1

Yj , Y j=F(l j* , = j*)

We claim that 3/E(:1 ,..., :k) and dimH 3�4&$. Suppose x=(x i ) # 3.
For any n(>m1), there is a unique integer J(n) such that

:
J(n)

i=1

l i*�n� :
J(n)+1

i=1

l i*

Let |n=x1 } } } xn # 7n . Then

N*(|n)�l1*[:1+=1*]+ } } } +l*J(n)+1[:1+=*J(n)+1]

N*(|n)�l1*[:1&=1*]+ } } } +l*J(n)[:1&=*J(n)]
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It follows that

lim
n � �

N*(|n)
n

=:1

Observe that

N
*

(|n)�l1*[:1&:2+=1*]+ } } } +l*J(n)+1[:1&:2+=*J(n)+1]

N
*

(|n)�l1*[:1&:2&=1*]+ } } } +l*J(n)[:1&:2&=*J(n)]

so,

lim
n � �

N
*

(|n)
n

=:1&:2

In the same way we can prove that

lim
n � �

Ni (|n)
n

=: i&2:i+1+:i+2 (1�i�k&2)

Thus we have proved that 3/E(:1 ,..., :k).
The set 3 is a homogeneous Moran set, i.e., 3 # M([0, 1], [nj ], [cj ]).

The same calculation in the proof of Theorem 4 gives dimH E(:1 ,..., :k)�
4&$�2, (\$>0). K

7. APPLICATIONS OF THEOREM 3

In this section, we first present an algorithm for computing the
pressure of an energy function which depends only on a finite number of
coordinates. Then we apply Theorem 3 to some special cases.

7.1. Calculation of the Pressure Function

For a function g: 7 � R+, let

p(g)= lim
n � �

1
n

log 2n |
7

`
n&1

j=0

g(T jx) dx

Then P8(;)= p(exp(;, 8) ). We are going to compute p(g) for g(x)
depending only on finite number of coordinates of x.
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Case I. g(x)= g(x1). Since

2n |
7

`
n&1

j=0

g(T jx) dx=2n :
x1 } } } xn # [0, 1]n

g(x1) g(x2) } } } g(xn) }
1
2n

=(g(0)+ g(1))n

it follows that p(g)=log(g(0)+ g(1)).

Case II. g(x)= g(x1 , x2). We have

2n |
7

`
n&1

j=0

g(T jx) dx= 1
2 :

x1 } } } xn+1 # [0, 1]n+1

g(x1 , x2) g(x2 , x3) } } } g(xn , xn+1)

Let now

Gn(0)= :
x1 } } } xn # [0, 1]n

g(x1 , x2) g(x2 , x3) } } } g(xn&1 , xn) g(xn , 0)

Gn(1)= :
x1 } } } xn # [0, 1]n

g(x1 , x2) g(x2 , x3) } } } g(xn&1 , xn) g(xn , 1)

Then, Gn(0) and Gn(1) satisfy the following recursive relation:

Gn+1(0)=Gn(0) g(0, 0)+Gn(1) g(1, 0)

Gn+1(1)=Gn(0) g(0, 1)+Gn(1) g(1, 1)

Therefore

\Gn(0)
Gn(1)+=An \1

1+ , where A=\g(0, 0) g(1, 0)
g(1, 0) g(1, 1)+

So,

2n |
7

`
n&1

j=0

g(T jx) dx= 1
2 &An&1

where &A&1 denotes the norm of A defined by the sum of all absolute
values of its entries. Thus we get p(g)=log Spec(A) where Spec(A) denotes
the spectral radius of A.

Case III. g(x)= g(x1 , x2 , x3). We have

2n |
7

`
n&1

j=0

g(T jx) dx=
1
22 :

x1 } } } xn+2 # [0, 1]n+2

g(x1 , x2 , x3) } } } g(xn , xn+1 , xn+2)
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For any =1 , =2 # [0, 1], set

Gn(=1 , =2)= :
x1 } } } xn+2 # [0, 1]n+2

xn+1==1 , xn+2==2

g(x1 , x2 , x3) } } } g(xn , xn+1 , xn+2)

Then Gn(=1 , =2) satisfy the following recursive relation:

Gn+1(0, 0)=Gn(0, 0) g(0, 0, 0)+Gn(1, 0) g(1, 0, 0)

Gn+1(0, 1)=Gn(0, 0) g(0, 0, 1)+Gn(1, 0) g(0, 1, 0)

Gn+1(1, 0)=Gn(0, 1) g(0, 1, 0)+Gn(1, 1) g(1, 1, 0)

Gn+1(1, 1)=Gn(0, 1) g(0, 1, 1)+Gn(1, 1) g(1, 1, 1)

Thus

2n |
7

`
n&1

j=0

g(T jx) dx=
1
22 &An&1

and

p(g)=log Spec(A)

where

A=\
g(0, 0, 0)
g(0, 0, 1)

0
0

0
0

g(0, 1, 0)
g(0, 1, 1)

g(1, 0, 0)
g(1, 0, 1)

0
0

0
0

g(1, 1, 0)
g(1, 1, 1)+

Case IV. g(x)= g(x1 ,..., xk). In this general case, we can get

p(g)=log Spec(A)

where A=(ai, j )2k&1_2k&1 is defined as follows. Write

i=1+ :
k&1

l=1

=l 2k&1&l, j=1+ :
k&1

l=1

vl 2k&1&l, (=l , vl=0 or 1)

Define

g(0, =1 ,..., =k&1), if v1=0, v j== j&1 for 2� j�k&1

ai, j={g(1, =1 ,..., =k&1), if v1=1, vj==j&1 for 2� j�k&1

0, otherwise
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7.2. Computation of dim E8(:) by Theorem 3

In this section, we give two examples to show how the method
provided by Theorem 3 allows us to compute the dimension of E8(:).

Example 1. 8(x)=(x1 , x1x2). By the algorithm we have just dis-
cussed above, we get

P8(;1 , ;2)=log[1+exp(;1+;2)

+- (1&exp(;1+;2))2+4 exp(;1)]&log 2

Write down

�P8

�;1

=
1

1+e ;1+;2+- (1&e ;1+;2)2+4e ;1 \e ;1+;2+
e2;1+2;2&e ;1+;2+2e;1

- (1&e ;1+;2)2+4e ;1 +
�P8

�;2

=
1

1+e ;1+;2+- (1&e ;1+;2)2+4e ;1 \e ;1+;2+
e2;1+2;2&e ;1+;2

- (1&e;1+;2)2+4e ;1+
Now taking ;=(0, 0) gives us

{P8(0, 0)=\1
2

,
1
4+ , P8(0, 0)=log 2

dimH E \1
2

,
1
4+=&

1
log 2

[(;, {P8(;)) &P8(;)]=1

It is a trivial result. Taking ;=(1, &1) gives us

{P8(;)=\1
2

,
1

2(1+- e)+ , P8(;)=log(1+- e)

dimH E \1
2

,
1

2(1+- e)+=
1

log 2 _log(1+- e)&
1
2 \1&

1

1+- e+&
These results can be verified by the formula provided by Theorem 1.

Example 2. 8(x)=(x1 , x2(1&x1)). Note that :=(:1 , :2) # L8

means :1 (resp. :2) is the proportion of word ``1'' (resp. ``01') in dyadic
development of points in E8(:). In this case, we have
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P8(;1 , ;2)=log[1+exp(;1)+- (1&exp(;1))2+4 exp(;1+;2)]&log 2

�P8

�;1

=
1

1+e ;1+- (1&e ;1)2+4e ;1+;2 \e ;1+
e2;1&e ;1+2e ;1+;2

- (1&e ;1)2+4e ;1+;2+
�P8

�;2

=
1

1+e ;1+- (1&e ;1)2+4e ;1+;2 \
2e ;1+;2

- (1&e ;1)2+4e ;1+;2+
Taking ;=(0, 0) gives

{P8(0, 0)=( 1
2 , 1

4), P8(0, 0)=log 2

dimH E( 1
2 , 1

4)=1

Taking ;=(0, 1) gives

{P8(;)=\1
2

,
- e

2(1+- e)+ , P8(;)=log(1+- e)

dimH E \1
2

,
- e

2(1+- e)+=
1

log 2 _log(1+- e)&
- e

2(1+- e)&
These results are not directly covered by Theorem 1, but by Theorem 2.

8. APPLICATIONS OF THEOREMS 1 AND 2

8.1. 8(x)=8(x1)

We have L8=8(0) 8(1) (the segment joining 8(0) and 8(1). For
: # L8 , we have

dimH E8(:)=dimP E8(:)=&# log2 #&(1&#) log2(1&#)

where

#=
|:&8(1)|

|8(1)&8(0)|
, 1&#=

|:&8(0)|
|8(1)&8(0)|

The limit set is clear because 21=[ p=( p0 , p1) : p0 , p1�0, p0+
p1=1]. So, :=(:1 , :2)=.( p) iff :1=# and :2=1&#. Now it suffices to
write down the formula according to Theorem 2.
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8.2. 8(x)=8(x1 , x2)

For convenience, take the lexicographical order on 22 . That means
the elements in 22 are denoted and ordered by (x0, 0 , x0, 1 , x1, 0 , x1, 1). It is
easy to see that

22=[(a, b, b, c) : a, b, c�0; a+2b+c=1]

It follows that

L8=[a!1+2b!2+c!3 : (a, b, b, c) # 22)]

where

!1=8(0, 0), !2= 1
2 [8(0, 1)+8(1, 0)], !3=8(1, 1)

In other words, L8 is the convex set generated by the three vectors !1 , !2

and !3 . If (!1 , !2 , !3) are not collinear, which implies d�2, then L8 is the
triangle of vertexes !1 , !2 and !3 , and there is a one-to-one correspondence
between : # L8 and (a, b, b, c) # 22 . In this case, the dimension is equal to
H( p:) where p: is the unique vector corresponding to :, the bary-centric
coordinates of :. If (!1 , !2 , !3) are collinear, L8 is a segment and the maxi-
mum in Theorem 2 may be computed through the Lagrange multiplier
method. We point out that H( p) is strictly concave function on the simplex
consisting of all probability vectors p, because its Hessian matrix is

&
p(0, 1)

p(0, 0)+ p(0, 1)
1

p(0, 0)+ p(0, 1)

1
p(0, 0)+ p(0, 1)

&
p(0, 0)

p(0, 0)+ p(0, 1)

&
p(1, 0)

p(1, 0)+ p(1, 1)
1

p(1, 0)+ p(1, 1)
1

p(1, 0)+ p(1, 1)
&

p(1, 0)
p(1, 0)+ p(1, 1)

which is negative definite.

Example 3. If 8(x)=((1&x1)(1&x2), (1&x1) x2 , x1(1&x2),
x1 x2), then L8 is the triangle in R4 of vertexes (1, 0, 0, 0), (0, 1

2 , 1
2 , 0) and

(0, 0, 0, 1), and for any :=(:i )1�i�4 # L8 we have

dimH E8(:)=dimP E8(:)=log2

(:1+:2):1+:2 (:3+:4):3+:4

::1
1 ::2

2 ::3
3 ::4

4
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Let p=(a, b, b, c) # 22 . It suffices to observe that :=.( p) iff :1=a,
:2=:3=b and :4=c. This formula was obtained by Billingsley in ref. 2.
But, in ref. 2, it was not mentioned what happens when : # 22"2+

2 .

Example 4. If 8(x)=(x1 , x1 x2), then L8 is the triangle in R2 of
vertexes (0, 0), (1�2, 0) and (1, 1) and for :=(:1 , :2) # L8 we have

dimH E8(:)=dimP E8(:)

=:1 log2 :1+(1&:1) log2(1&:1)

&:2 log2 :2&2(:1&:2) log2(:1&:2)

&(1&2:1+:2) log2(1&2:1+:2)

The set L8 is clear. Note that :=.( p) means :1=b+c and c=:2 .
Recall that a+2b+c=1. From these three equation we get a=1&2:1+
:2 , b=:1&:2 , c=:2 . Now it suffices to write down the formula in
Theorem 2. This confirms Theorem 1 for k=2.

Example 5. If 8(x)=(x1 , (1&x1) x2), then L8 is the triangle in R2

of vertexes (0, 0), (1�2, 1�2) and (1, 0) and for :=(:1 , :2) # L8 we have

dimH E8(:)=dimP E8(:)

=:1 log2 :1+(1&:1) log2(1&:1)

&2:2 log2 :2&(:1&:2) log2(:1&:2)

&(1&:1&:2) log2(1&:1&:2)

Example 6. If 8(x)=x1 x2 , we have L8=[0, 1] and for : # [0, 1]

dimH E8(:)=dimP E8(:)=H( p:)

where p:=(2x:&1+:, 1&:&x: , 1&:&x: , :) # 22 where x: # [0, 1] is
the solution of

x(1&:&x)2=(1&x)(2x&1+:)2

Note that 8(0, 0)=8(0, 1)=8(1, 0)=0 and 8(1, 1)=1. Let p=
(a, b, b, c) # 22 . Then :=.( p) iff :=c. It follows, from a+2b+c=1, that
L8=[0, 1]. Note that
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H( p)=log2 \a+b
a +

a

\a+b
b +

b

\b+c
b +

b

\b+c
c +

c

=log2

(a+b)a+b (b+c)b+c

aab2bcc

Introduce the variable x=a+b. Since a+2b+c=1 and c=:, we have
b+c=1&x, b=1&:&x and a=2x&1+:. Consider H as a function of
x, which is concave. x: must be the solution of dH�dx=0. However

dH
dx

=log2

x(1&:&x)2

(1&x)(2x&1+:)2

A. Bisbas(3) studied the above situation and obtained a different formula.
More general situation in the next subsection was also studied by
A. Bisbas.(4) We shall obtain a result for it as a consequence of Theorem 1.

8.3. 8k(x)=x1x2 } } } xk

Our aim is to study the set E8k
(;) where 8k(x)=x1x2 } } } xk is the

product (not the concatenation) of the first k coordinates. E8k
(;) is thus

the set of points x which have ;n 1-blocks of length k in their first n coor-
dinates.

Introduce the vector valued function 8: 7 � Rk defined by 8=
(81 , 82 ,..., 8k) where 8 j (x)=x1 x2 } } } xj (1� j�k). By Theorem 1, we
know that

L8=[(:1 , :2 ,..., :k) : 1=:0�:1� } } } :k�0, [:j ]k
j=0 is convex]

For 0�;�1, denote by D;, k the section of L8 defined by

D;, k=[(:1 , :2 ,..., :k&1) : 1=:0�:1� } } } �:k=;, [:j ]k
j=0 is convex]

It is clear that D1, k is a singleton and dim E8k
(1)=dim E8(1, 1,..., 1)=0.

If 0�;<1, D;, k is a convex set of dimension k&1.

Theorem 5. For 0�;�1, we have

dimH E8k
(;)=dimP E8k

(;)=sup
D;, k

4(:1 ,..., :k&1 , ;)
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where 4 is the function defined in Theorem 1. If 0�;<1, the supremum
is attained at the unique solution (:̂1 ,..., :̂k&1) of the system of equations

�
�:j

4(:1 ,..., :k&1 , ;)=0 (1� j�k&1)

Proof. Since E8(:1 ,..., :k&1 , ;)/E8k
(;), the supremum is bounded

by dimH E8k
(;). According to Theorem 2, there is a vector probability

p # 2k such that

:
x1 ,..., xk

p(x1 ,..., xk) 8k(x1 ,..., xk)=;

dimH E8k
(;)=H( p)

Denote

:̂j= :
x1 ,..., xk

p(x1 ,..., xk) 8j (x1 ,..., xk) (1� j�k&1)

Again by Theorem 2, we have

dimH E8(:̂1 ,..., :̂k&1 , ;)�H( p)

It is sure that (:̂1 ,..., :̂k&1) # D;, k because (:̂1 ,..., :̂k&1 , ;) # L8 . Combining
the last two expressions involving H( p) gives the desired formula. We have
seen that (:̂1 ,..., :̂k&1) is the maximal point of 4( } , ;). Since 4( } , ;) is a dif-
ferentiable strictly concave function in D;, k , if we can prove that 4( } , ;)
doesn't attains its maximum on the boundary of D;, k , (:̂1 ,..., :̂k&1) must
be the unique solution of the system. According to the definition of 4, it
can be checked that for any boundary point :� # D;, k , the directional
derivative

d4(:� , ;)
dl

=+�

where l is a direction pointing to the interior of D;, k . This implies that
4( } , ;) doesn't attains its maximum on the boundary of D;, k . K

8.4. 8(x)=(8n1
(x1 , x2 ,..., xk),..., 8 ns

(x1 , x2 ,..., xk))

In the same way as above, we can deal with

8(x)=(8n1
(x1 , x2 ,..., xk),..., 8ns

(x1 , x2 ,..., xk))
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where 1�n1< } } } <ns�k and 8j (x)=x1x2 } } } xj (1� j�k). For example,
when 8(x)=(x1x2 , x1x2x3x4), for any (:, ;) # L8 we have dim E:, ;=
4(x̂, :, ŷ, ;) where (x̂, ŷ) is the solution of the system

�
�x

4(x, :, y, ;)=0,
�

�y
4(x, :, y, ;)=0.

More generally, Theorem 2 may be used to deal with any function 8
which depends only upon a finite number of coordinates. Consider just an
example.

Example 7. 8(x)=x2&2x1 x3+3x1 x2x3 .
Note that 23 is a 4-dimensional convex. For p # 23 , let

x= p(0, 0, 0)+ p(0, 0, 1), y= p(0, 1, 0)+ p(0, 1, 1)

z= p(0, 0, 1), w= p(0, 1, 1)

It may be checked that

.( p)=2&2x+2y+2z&w

Suppose : # L8 with :=.( p). We get w=2&2x+2y+2z&:. Thus
H( p)= f (x, y, z) where

f (x, y, z)=F(x&z, z)+F( y&w, w)+F(z, y&z)+F(w, 1&x&2y&w)

with F(a, b)=h(a)+h(b)&h(a+b). It can be proved that for : # L8 , we
have

dim E8(:)= sup
p # 23 , .( p)=:

H( p)= f (x̂, ŷ, ẑ)

where (x̂, ŷ, ẑ) is the unique solution of the system

�
�x

f (x, y, z)=0,
�

�y
f (x, y, z)=0,

�
�z

f (x, y, z)=0

We point out that F(a, b) admits +� as its directional derivative at a
boundary point with a direction pointing to the interior of its domain of
definition.
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9. GENERALIZATIONS

Theorems 2, 3 and 4 hold for a symbolic space with more than two
symbols, say m symbols. It suffices to replace log2 by logm in the statements
of the theorems. More generally, these theorems can be generalized to
transitive subshifts of finite type. Let 7=[1, 2,..., m]N (m�2) and T be the
shift on 7. Let A=(ai, j ) be a m_m matrix with ai, j # [0, 1]. Define

7A=[(xn) # 7 : axn , xn+1
=1 \n�1]

Note that T7A/7A . The system (7A , T ) is called a subshift of finite type.
Suppose further that all the entries of AM are strictly positive for some
M�1. Then the subshift is said to be (topologically) transitive.

The statement of Theorem 4 doesn't change for transitive subshifts.
But in the definition of f (:, n, =), by a n-cylinder I(x1 ,..., xn) we means

I(x1 ,..., xn)=[( yn) # 7A : y1=x1 ,..., yn=xn]

So, I(x1 ,..., xn) is empty if axj , xj+1
=0 for some 1� j<n.

Let 7A, k be the set of all sequences (x1 ,..., xn) such that axj , xj+1
=1 for

all 1� j<n. Let 2k=2A, k (associated to 7A) be the set of probability vec-
tors p defined on 7A, k such that

:
i

p(x1 ,..., xk&1 , i)=:
j

p( j, x1 ,..., xk&1)

where the first sum is taken over i 's such that axk&1 , i=1 and the second
sum is taken over j 's such that aj, x1

=1. For a function 8: 7A � Rd

depending only upon the first k coordinates, define .: 2k � Rd

.( p)= :
p # 7A, k

p(x) 8(x)

Formally, Theorem 2 also holds in the case of transitive subshift. But the
function H is

H( p)= :
x1 ,..., xk

p(x1 ,..., xk) logm
�i p(x1 ,..., xk&1 , i)

p(x1 ,..., xk)

It is understood that p(x)=0 if x � 7A, k .
Since 7A, k is transitive, for any |=(xj )

n
j=1 # 7A, n and any 1�x0�m,

there are 1� y1 ,..., yM&1�m such that

(x1 ,..., xn , y1 ,..., yM&1 , x0) # 7A, n+M
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We call |� =(x1 ,..., xn , y1 ,..., yM&1) an extension of | joining x0 . The
essential change in the proofs of Theorems 2 and 4 is to replace finite
sequences which appear in different constructions of infinite sequences by
their extensions. For example, in Step 2 of the proof of Theorem 4, we
define

|=|� 1 } } } |� 1|� $1

m1

|� 2 } } } |� 2|� $2

m2

|� 3 } } } |� 3|� $3

m3

} } }

where |� 1 is an extension of x(1) | n1
joining x(1)| 1 but |� $1 is an extension of

x(1) |n1
joining x(2) |1 ; |� 2 is an extension of x(2) | n2

joining x (2) |1 but |� $2 is
an extension of x(2) | n2

joining x3 |1 ; and so on.
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